Wednesday, July 21, 2021

Trigonometry solved questions | Grade 9 | Ganesh Bahadur Khadka |

Trigonometry

Trigonometric Ratios

In right angled triangle, there are three sides which have there own special names: hypotenuse, perpendicular and base.


1. The side opposite to 90° is called hypotenuse(h).

2. The side opposite to reference angle is called perpendicular(p).

3. The side in between reference angle and 90° is called base(b).

By using these three sides, we can form six ratios. These ratios are called Trigonometric ratios for the reference angle θ. Let us define them.

    i) sin θ = perpendicular/hypotenuse = p/h
ii) cos θ = base/hypotenuse = b/h
  iii) tan θ = perpendicular/base = p/b
          iv) cosec θ = hypotenuse/perpendicular = h/p
v) sec θ = hypotenuse/base = h/b
  vi) cot θ = base/perpendicular = b/p

Important Formula

i) sin2θ + cos2θ = 1
ii) sin2θ = 1 - cos2θ
iii) cos2θ = 1 - sin2θ
iv) sinθ = (√1 - cos2θ)
v) cosθ = (√1-sin2θ)
vi) sec2θ -tan2θ = 1
vii) sec2θ = 1 + tan2θ
viii) tan2θ = sec2θ - 1
ix) secθ = (√1 + tan2θ)
x) tanθ = (√sec2θ - 1)
xi) cosec2θ - cot2θ = 1
xii) cosec2θ = 1 + cot2θ
xiii) cot2θ = cosec2θ - 1
xiv) cosecθ = (√1 + cot2θ)
xv) cotθ = (√cosec2θ - 1)
xvi) tanθ = sinθ/cosθ
xvi) cotθ = cosθ/sinθ


[NOTE: sinθ = 1/cosecθ , cosθ = 1/secθ , tanθ = 1/cotθ , cotθ = 1/tanθ , secθ = 1/cosθ , cosecθ = 1/sinθ]


Ex-5.4

1. Simplify

a) -sinA(cosA - sinA) - cosA(sinA - cosA)
                  Ans: Here,
                      = -sinA.cosA + sin2A - cosA.sinA + cos2A
                      = -2sinA.cosA + 1 [sin2A + cos2A = 1]
                      =  1 - 2sinA.cosA
b) tanA(secA + 1) + secA(1 - tanA)
                  Ans: Here,
                      = tanA.secA + tanA + secA - secA.tanA
                      = tanA.secA + tanA + secA - tanA.secA
                      = tanA + secA
c) (2tanA + 1) (3tanA - 8)
                  Ans: Here,
                      = 2tanA(3tanA - 8) + 1(3tanA - 8)
                      = 6tan2A - 16tanA + 3tanA - 8
                      = 6tan2A -13tanA -8
d) (sinB - cosB) (sinB + cosB)
                  Ans: Here,
                      = sinB(sinB + cosB) - cosB(sinB + cosB)
                      = sin2B + sinB.cosB - sinB.cosB - cos2B
                      = sin2B + sinB.cosB - sinB.cosB - cos2B
                      = sin2B - cos2B 
e) (1 - secA) (1 + secA) (1 + sec2A)
                  Ans: Here,
                      = (1 - sec2A) (1 + sec2A) [(a-b)(a+b)= a2-b2]
                      = 1(1 + sec2A) - sec2A(1 + sec2A)
                      = 1 + sec2A - sec2A - sec4A
                      = 1 - sec4A 
f) (5 - cosecβ) (2cosecβ + 4)
                  Ans: Here,
                      = 5(2cosecβ + 4) - cosecβ(2cosecβ + 4)
                      = 10cosecβ + 20 - 2cosec2β - 4cosecβ
                      = 20 + 6cosecβ - 2cosec2β
g) (sinA - cosA) (sin2A + sinA.cosA + cos2A)
                  Ans: Here,
                      = sin3A - cos3A  [a3-b3=(a-b)(a2+ab+b2)]
h) (1 + tanA) (1 - tanA + tan2A)
                  Ans: Here,
                      = 1 + tan3A   [a3+b3=(a+b)(a2-ab+b2)]
i) (2tanC - cosecB) (3tanC + 2cosecB)
                  Ans: Here,
                      = 2tanC(3tanC+2cosecB)-cosecB(3tanC+2cosecB)
                      = 6tan2C+4tanC.cosecB-3tanC.cosecB-2cosec2B
                      = 6tan2C+tanC.cosecB-2cosec2B 
j) sin2x (sin2x- 1) - 3(sin4x - 1)
                  Ans: Here,
                      = sin4x - sin2x - 3sin4x + 9
                      = -2sin4x - sin2x + 9

        

3. Prove the following identities.

4. Show that:

5. Prove that:

Wednesday, May 12, 2021

Equations of motion (V.K Shrestha) numericals

                                                                  

                                                         PHYSICS

                   Solution of V.K Shrestha

                     
                        

                              UNIT: 2 =  Equations of Motions
                                             
                                            














After completing these course, please try to solve your questions from exercise book and from other practice books which helps you to score good marks in an examination.

























        









Trigonometry solved questions | Grade 9 | Ganesh Bahadur Khadka |

Trigonometry Trigonometric Ratios In right angled triangle, there are three sides which have there own special...